An evolution system for a class of age-structured diffusive population equations

نویسندگان

چکیده

Kato's theory on the construction of strongly continuous evolution systems associated with hyperbolic equations is applied to linear equation describing an age-structured population that subject time-dependent diffusion. The system used provide conditions for well-posedness corresponding quasilinear equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Convergence of the Homotopy Analysis Method for Nonlinear Age-Structured Population Models

In this paper, a theorem is proved which presents the series solution obtained from the homotopy analysis method is convergent to the exact solution of nonlinear age-structured population models.

متن کامل

A new iteration method for solving a class of Hammerstein type integral equations system

In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...

متن کامل

Periodic Mckendrick Equations for Age-structured Population Growth

Abstract--With the averaged net reproductive rate used as a bifurcation parameter, the existence of a local parameterized branch of time-periodic solutions of the McKendrick equations is proved under the assumption that the death and fertility' rates suffer small-amplitude time periodicities. The required linear theory is developed and the results are illustrated by means of a simple example in...

متن کامل

On subalgebras of an evolution algebra of a "chicken" population

We consider an evolution algebra which corresponds to a bisexual population with a set of females partitioned into finitely many different types and the males having only one type. For such algebras in terms of its structure constants we calculate right and plenary periods of generator elements. Some results on subalgebras of EACP and ideals on low-dimensional EACP are obtained.

متن کامل

A numerical algorithm for solving a class of matrix equations

In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$  by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B

سال: 2023

ISSN: ['1531-3492', '1553-524X']

DOI: https://doi.org/10.3934/dcdsb.2022179